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Abstract: In this article, a comparison is presented of empirical equations to machine learning methods for the estimation and 
imputation of rainfall erosivity values, associated with significant amounts of rainfall measurements that are missing 
in the available recording rain gauge data of the Greek Hydroscope database. The empirical equations are mainly 
based on exponential relations between erosivity and rainfall, while the machine learning methods employed in this 
paper are feed-forward neural networks with Bayesian regularization and ridge regression with nonlinear 
transformation. The data came from 81 measuring stations of the Ministry of the Environment and Energy. In the 
employed algorithms, the output was the weekly cumulative erosivity value, which resulted from processing the data 
of all rain gauges and pluviographs, while the input data consisted of the weekly cumulative rainfall, the month, the 
co-ordinates and the elevation of the station, as well as the number of days for which the rainfall was recorded. For 
validation, a method of nested cross-validation was employed. The machine learning methods gave significantly 
better results compared to the empirical equations, thus reducing the effects of estimating R from only weekly rainfall 
records. 
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1. INTRODUCTION  

The soil loss problem of Greece dates back to prehistoric times (Vita-Finzi, 1969; Van Andel 
and Zangger, 1990), while during the last fifty years it has been aggravated due to the 
intensification and mechanization of the agricultural sector (Boardman and Poesen, 2006). In the 
year 2001, the Hellenic National Action Plan against Desertification was enacted, in which it was 
recognized that the country is inflicted by the phenomenon of desertification. The most significant 
process responsible for soil loss in Greece is related to rainfall erosivity. 

The evaluation of rainfall erosivity is essential for the assessment of the soil loss risk, and the 
difficulty in small scale modelling has led to more tractable rainfall indices, such as the coefficient 
R of the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1978). The computation of 
R requires pluviograph data for the determination of 30 minutes’ maximum intensities of storms 
over time periods of more than 20 years (Renard and Freimund, 1994). In order to deal with the lack 
of such data, several models have been developed based on rainfall measurements at various time 
steps, on spatial parameters and on climatological data, such as maximum precipitation etc. 
(Diodato and Bellocchi, 2007; Angulo-Martínez and Beguería, 2009). 

Pluviograph data, although available to a great extent in Greece, suffer from significant 
proportions of missing values. This fact necessitated imputation of the erosivity values that resulted 
from the data, so as to finally estimate R on a countrywide basis. For this imputation both empirical 
equations and machine learning methods were employed and comparisons between these two 
approaches are presented in this paper.  

The problem of infilling hydro-meteorological data in general has been dealt within the 
literature, in terms of local averages (Pappas et al., 2014) and in relation to various forms of neural 
networks (Coulibaly and Evora, 2007; Nkiaka et al., 2016). Imputation in relation to erosivity is 
scarce. A recent publication (Diodato et al., 2017) concerns reconstruction of time series from 
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coarser rainfall records. The use of machine learning methods, such as Neural Networks can be 
found in the recent literature on the subject of rainfall prediction (Hellman et al., 2012; Sharma and 
Goyal, 2016), but not in relation to the special issue of erosivity, as presented in this paper. 

2. DATA AND METHODS 

2.1 Constitution of the data set 

The data utilized in the analysis were taken from the Hydroscope Database (Koutsogiannis et al., 
1995) and came from 81 meteorological stations of the Ministry of the Environment (Figure 1). The 
time series comprised a total of 2,333 years of pluviograph records with a time step of 30 minutes 
for the time period from 1953 to 1997, including the corresponding rain gauge 24-hour 
measurements with average record length 28 years. The time series were checked for gross errors 
and cleaned from noise that was due to the initial digitization of the pluviometers’ bands. Missing 
values were marked out in a consistent way. In the pluviograph data, the percentage of these values 
was 44% on average, while the corresponding value in the rain gauges’ data was 7%. 

 

Figure 1. Meteorological stations. 

For the above described data, it was deemed useful to change the time step and aggregate the 
data into weekly values, because 57% of the recordings were associated with storms occupying time 
periods covering parts of more than one calendar day, although only 17% of the storms had duration 
of more than 24 hours. Under the time step of one week, it was found out that 80% of the values 
emanated from a single storm. The storms that were crossed temporally by two consecutive weeks 
were assigned to the first of the two weeks. They comprised only 7% of the data. Thus, through the 
use of weekly instead of daily values, divisions of storms due to time-step were prevented. 

2.2 Extraction of rainfall erosivity 

The R coefficient (MJ.mm/ha/h/yr) is defined as the long-term average of the product of the 
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kinetic energy of a storm and the maximum 30 min intensity (Brown and Foster, 1987): 
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where n is the number of years with rainfall records, mj the number of storms during year j and EI30 
the erosivity of storm k. The erosivity EI30 (MJ.mm/ha/h) is equal to: 
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where er is the energy of rainfall (MJ/ha/mm) and vr the rainfall depth (mm) for the time interval r 
of the hyetograph, which has been divided into r = 1, 2, ..., m subintervals, such that each one of 
these is characterized by constant rainfall intensity. The quantity er is calculated for r from the 
relation: 

( )rir e=e 0.050.7210.29 −
−⋅  (3) 

where ir is the rainfall intensity (mm/h). The rules that apply in order to single out the storms 
causing erosion and to divide rainfalls of large duration are: (a) A rainfall event is divided into two 
parts, if its cumulative depth for duration of 6 hours at a certain location is less than 1.3 mm and (b) 
A rainfall is considered erosive, if it has a cumulative value greater than 12.7 mm or if during a time 
period of 15 mins a cumulative value of at least 6.4 mm is recorded. 

2.3 Solution methods 

The erosivity imputation problem is set up as a scheme of statistical learning, consisting of (a) 
data representing features of the studied physical processes, (b) measured outcomes of the same 
processes and (c) numerical models that simulate the physical processes as closely as possible based 
on the data of (a) and (b). 

2.3.1 Outcomes and features 

The outcomes, denoted as y(i), where (i) is the index of a sample consisting of m = 20,603 values, 
represented weekly cumulative rainfall erosivity, as it resulted from the pertinent calculations based 
on the data of all pluviographs. The features included the weekly cumulative rainfall P of erosive 
events, the month to which the above individual m values are referred, the longitude, latitude and 
altitude of the meteorological stations and the number of the days of the week (one, two, three or 
more), for which rainfall is recorded. Depending on the model used, a different subset of input 
variables was used. 

2.3.2 Validation of models 

A number of models were evaluated for the imputation problem, accompanied each time by a 
suitable algorithm. In all cases the estimation of the out-of-sample error and the optimal 
hyperparameters of the used models was performed using nested cross validation. In the outer cross 
validation, the data were divided into 10 sections for the purpose of estimating the out-of-sample 
error. In the inner cross validation, every set of the outer training was divided again into 10 sections 
in order to select the optimal hyperparameters of the models. The division of the data into sections 
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was executed on a yearly basis, so that sets of equal sizes could be formed. The coefficient of 
determination R2 was used as a measure of the error: 
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thus, each model was compared with a simplistic one which was equal to the average of the training 
set values ŷtrain. 

2.4 Models and algorithms 

2.4.1 Nonlinear least squares models 

Two alternative exponential models (Richardson et al., 1983; Yu and Rosewell, 1996) were tried, 
given by Equations (5) and (6) and leading to optimal adjustments of two respective hypotheses, 
NLLS1 and NLLS2: 
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where ω is the month with the largest median of the y values as it derived from the training data and 
θ0, θ1 and θ2 the parameters of the two hypotheses. The latter were determined by minimizing the 
following objective function by the trust region reflective method (Coleman and Li, 1994, 1996): 
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2.4.2 Ridge regression with nonlinear transformation 

The hypothesis LR tried was the following: 
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where xj, j=1, 2, ..., 17 stands for the input data and θj, for the parameters of the linear regression to 
be determined. The input data x were the normalized values of log(P), Long, Lat, Alt, 11 binary 
values for the corresponding month and 2 binary values representing the rainy days. The 
normalizing transformation of the data was the following: 
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where x̂ denotes average and sd(x) standard deviation. The parameters θj were determined from the 
minimization of the following objective function by means of the conjugate gradient algorithm 
(Nocedal and Wright, 2006): 
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The regularizing hyperparameter λ prevented overfitting of the model to the training data (Abu-
Mostafa et al., 2012). The weight of sample i, w(i) was set equal to w(i) = y(i)/max(y) so that higher y 
values had proportionately larger weights and z = log(y) was the nonlinear transformation of the 
outcome. The optimal value of λ = 3·10-7 resulted from a vector of values Λ = [10-9, 3·10-8, 10-8, 
...,1]. 

2.4.3 Feed-forward neural networks with Bayesian regularization  

Neural networks as powerful regression tools try to mimic the function of the human brain 
(Bishop, 1995). The learning algorithm used here is Bayesian regularization back-propagation, in 
combination with the Levenberg-Marquart method (Moré, 1978). Regularization and feature 
selection are automatically incorporated and the whole algorithm yields a network with good 
generalizing abilities (MacKay, 1992; Foresee and Hagan, 1997). 

The architecture of the neural networks included one hidden layer with a linear output. The 
training of the networks was performed by the method of early stopping (Wang et al., 1994) by 
utilizing a random validation set consisting of 10% of the training data, so as to avoid overfitting of 
the neural networks. In order to prohibit negative values, the network output results were bounded 
based on the smallest outcome value of the training data. The input data x were the normalized 
values of P, Long, Lat, Alt, eleven binary values representing the month and two binary values 
representing the number of rainy days. 

The hypothesis NNET employed consisted in the ensemble averaging of 20 neural networks, in 
order to deal with the inherent instability of neural networks due to locally optimal solutions for 
their parameters. The number of hidden neurons was treated as a hyperparameter of the algorithm 
and it was finally determined as l = 30 from a vector of possible values L = [20, 25, 30, 35, 40]. 

3. RESULTS 

The comparison of the algorithms was based on the work Demšar (2006), Garcia and Herrera 
(2008) and García et al. (2010) on the use of non-parametric methods for the evaluation of results of 
machine learning algorithms, because parametric hypothesis testing methods (pairwise t-test and 
ANOVA) were not deemed suitable due to the nature of the algorithms. The procedure employed 
for hypothesis testing made use of the statistical programming language R (R Core Team, 2016). 

The mean ranking of the algorithms is given on the basis of the 10 values of R2 that resulted 
from the outer nested cross validation and is: NLLS1 = 3.9, NLLS2 = 3.0, LR = 1.8 and NNET = 
1.3 with median values of R2: 0.46, 0.50, 0.61 and 0.65 respectively. Figure 2 shows the box plots 
of the error measures, where the superior performance of NNET is demonstrated. 

The Friedman test (Friedman, 1937) was performed, in order to determine whether an algorithm 
has a systematically better or worse performance. The obtained p-value 1.7·10-5 indicated that the 
null hypothesis of all the algorithms perform the same could be safely rejected. Then post-hoc tests 
followed for all possible pairs of algorithms using the Wilcoxon signed rank test (Wilcoxon, 1945). 
Because of the multiple pair wise tests, the p-values that resulted were adjusted using Benjamini 
and Hochberg method (1995), which controls the false discovery rate. The results are given in Table 
1, where it is shown that there were statistically strong evidences that the machine learning 
algorithms outperformed parametric methods. Between LR and NNET there were statistical 
evidences that the latter performed better. 
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 Figure 2. Outer cross validation R2 boxplots. 

Table 1. Adjusted Wilcoxon signed rank test p-values by Benjamini and Hochberg method. 

 NLLS1 NLLS2 LR 
NLLS2 0.011   
LR 0.004 0.006  
NNET 0.004 0.004 0.064 

3. CONCLUSIONS 

Because of the significant percentage of missing values in the time series, the use of the existing 
pluviograph data only would lead to an underestimation of R values. For this reason, a number of 
algorithms were employed for the imputation of erosivity values. From the performance evaluation 
of the algorithms by descriptive analysis and statistical inference, it was concluded that the 
presented machine learning algorithms outperformed the classical methods of estimation via 
parametric equations, reducing the effects of estimating R from weekly rainfall records. The NNET 
algorithm, besides having the best performance, presented the additional advantage of not 
necessitating prior knowledge of the form of its nonlinearity, in contrast to other tested algorithms. 
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